의사결정나무(decision tree) 의사결정나무는 비선형분류모델로 많이 사용되는 분류기 중 하나이며 데이터에 대한 분류 이유를 설명할 수 있다는 특징을 가지고 있다. 대부분의 머신러닝 모델들이 결과에 대한 해명을 하지 못한다는 사실에서 굉장한 장점이라는 것을 느낄 수 있다. 루트에서부터 리프까지 각 지점에 있는 기준에 의해 데이터가 순차적으로 분류된다. 또한 동일한 데이터 셋에 대해 여러 개의 다른 구조의 트리 모델을 학습시킬 수 있다. 의사결정나무 모델을 학습하는 알고리즘 중 Hunt’s algorithm은 다음과 같다. 특정 노드 A에 속해 있는 데이터들이 모두 동일한 클래스 B에 속해 있다면 노드 A는 클래스 B의 리프 노드라고 한다. 노드에 아무 데이터도 없다면 노드 A는 기본 클래스(defa..